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Abstract

We have performed a calibration of the Booster Ionization Profile Monitor (IPM) using a set of independent
measurements of the beam width and a new model of the ion dynamics in the detector. The independent measurements
were obtained both at injection, using a single wire, and at extraction, using a multiwire proportional chamber in
the extraction line (MI8). In order to obtain single-turn resolution during the injection measurements we utilized
a new technique, where the beam width is measured using a stationary wire at the location of the injection bump
magnet (ORBUMP), which the beam traverses when it moves from the injection to the nominal trajectory. The wire
and chamber measurements were compared to IPM measurements taken at the same time, and the results of the
comparison were used to constrain the model of the ion dynamics in the detector. Our calibration results in the the
formula ���������
	�������������������������������� ��� !
where � is the number of protons in the machine, in units of "�# � $

, ���%�'& ")(*"�+-,.#/( #)0)1�23"�#/4�576 � 4�8 ��9 "�# � $
, and: �;� #<( 0/"�=�,>#/( #<"�+ ; the subscript “measured” indicates the raw (uncorrected) IPM measurement, the subscript “real”

the true beam width.

1 Introduction

The Fermilab Booster is a rapid cycling, 15 Hz, alternating-gradient synchrotron with radius of 75.47 m, that acceler-
ates protons from 400 MeV kinetic energy to 8 GeV[1]. Multi-turn ?A@ injection is used; typically ten turns of Linac
beam are injected. During injection, a pulsed orbit bump magnet (ORBUMP) is used to superimpose the trajectories
of circulating and injected beam.

The Booster Ionization Profile Monitor (IPM) is the only device in the Booster capable of measuring beam profiles
with a time resolution of one turn (2.2 micro seconds at injection). The IPM measures profiles using ions produced by
the interaction of the beam with the imperfect vacuum of the machine. An applied transverse clearing field of 8 kV
causes the ions to drift to a micro-channel plate (MCP). The beam direction defines the longitudinal coordinate. The
detector is 0.5 m long, with a transverse gap of 12 cm. The MCP plate is B�CEDGFIH�JLK and has strip spacing 1.5 mm [3]
and [2]. The response of the IPM depends on the charge of the beam, so its response has to be calibrated as a function
of the injected number of protons.

2 Theoretical Calculation

Our objective is to measure the projection of the beam distribution on each one of the transverse coordinates. For an
ideal measurement of one projection, the ions’ drift should be parallel to the other (non-measured) coordinate. For this
purpose, the IPM provides an external field which is applied on the beam along the non-measured coordinate. On the
other hand, the field due to the beam itself is not transverse, so it distorts the behavior from the ideal. Figure 1 displays
sample trajectories of ions in the IPM with and without the presence of the beam-induced field. The simulation used
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to calculate the trajectories is described in Section 3. In the following we will calculate the distortion created by the
beam’s self-field.

We start by considering the scattering of particles of a beam with a gaussian transverse profile caused by the field
generated by the beam itself as well as an applied electric field. The total force felt by an ion in the combined field is

���������� 	 D�
��������
 � K������ K������! �� (1)

Here � is the total transverse RMS width of the beam distribution. The coefficient � is proportional to " , the
number of protons in the Booster, which we will typically measure in units of D)F$#K . The external field is perpendicular
to the coordinate in which we are measuring the beam profile. The longitudinal coordinate ( % ) is the beam direction.
We ignore the curvature of the beam in the longitudinal direction since the size of the detector is small compared to
the circumference of the ring.

It is instructive to compare the relative magnitudes of the applied field and the field due to the beam. A typical
beam at extraction might have � � �'& F mm and " � �'& ( C DGF'#K . Then

)*,+.-�/ 	 D�
�0���1�,
 � K2�)43 ����� K ���
 5

D
��687

where � 2�)43 is the distance from the center of the beam at which the field due to the beam is maximum. The small
value of this ratio suggests that it makes sense to start by ignoring the field due to the beam, then reintroduce it as a
perturbation.

It is possible to analytically calculate the average absolute deflection in the 9 coordinate due to the scattering by
the above force to leading order in the small parameter � , or, equivalently, the current " . The result is

: 9�;�<0=?> � : 9�@BA$> �DC " � @E#�F K*HG,)HI 7
where 9 @JA is the initial y-coordinate of the ion and 9 out is the y-coordinate of its arrival at the MCP. In the absence of
beam self-field effects, the above equation reduces to 9 @BA � 9 ;�<0= , i.e., there is no distortion in the profile measurement.

The constant C is a complicated integral involving the forces and distributions in the problem, but independent of
the parameters � *KG,)4I and " . We assert without proof that the scaling behavior above is insensitive to the detailed shape
of the beam distribution. Different beam shapes can only modify the size of C . The value of C also depends on the
details of the IPM such as the distribution of ions, distance to the wall, etc. We will include details and a calculation
of the variance of 9 in a full paper.

3 Simulations and Phenomenology

We have written a two-dimensional simulation of the physics of the preceding section using Octave[4]. In the simu-
lation we distribute particles in the �L
M9 plane according to an � � 9 -symmetric gaussian distribution of width � *KG,)4I .
We then calculate the individual particle trajectories using the force given in Equation (1). Finally, we calculate the
9 -location of the intercept of each particle trajectory with the MCP and form a histogram of the intercepts. Figure 1
shows some typical trajectories obtained from our simulation. In the actual Booster IPM, the width of the distribution
is determined from a fit to a gaussian plus a linear background. We followed the same procedure in the simulation,
even though the background in the input distribution is zero. We included a possible background term in the fit func-
tion in order to best match the fitting procedure used in the actual IPM. The resulting fitted width, �.N 2�G,)4*HG,O , is our
estimate of the � 2�G,) N < *KG,O observed in the actual IPM.

The parameters of the simulation include the geometry of the IPM, the strength of the clearing field, and the beam
width and current. These parameters are all well determined. One additional parameter is needed: the mass of the ions
themselves. We take the mass to be the mass of a water molecule. In the actual beam pipe a distribution of ions of
different species is present. We expect the mass of the ions to affect the overall size of the smearing due to the beam
current, but not the scaling with beam size itself.

Our simulation is similar to the simulation described in W. Graves’s thesis[3], the first use of the Booster IPM for
emittance measurements. Since the computer power available to us nine years later than Graves’s original work is
substantially greater, we have been able to extended our simulations of a larger range of parameter space and to work
to higher accuracy. In Figure 2 we show the results of our simulation, as well as the results of Graves’s earlier work.
Our new simulation closely matches the original simulation in the region of overlap.
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Figure 1: Simulated ion trajectories in the IPM. Ions are created by the beam (traveling in the � % direction) in the
center, then drift toward the MCP. The upper diagram is the idealized case where the field due to the beam is negligible.
The lower diagram shows the distortion of the trajectories for a realistic beam parameters.

3



-500000
-400000
-300000
-200000
-100000

0
100000
200000
300000
400000
500000

0 1 2 3 4 5 6
-500000
-400000
-300000
-200000
-100000

0
100000
200000
300000
400000
500000

0 1 2 3 4 5 6

Graves

-500000
-400000
-300000
-200000
-100000

0
100000
200000
300000
400000
500000

0 1 2 3 4 5 6

Graves
linear

-500000
-400000
-300000
-200000
-100000

0
100000
200000
300000
400000
500000

0 1 2 3 4 5 6

Graves
linear

quadratic

-500000
-400000
-300000
-200000
-100000

0
100000
200000
300000
400000
500000

0 1 2 3 4 5 6

sm
ea

re
d 

w
id

th
 [m

m
]

current N [1012]

Graves
linear

quadratic
0

1

2

3

4

5

0 1 2 3 4 5 6

sm
ea

re
d 

w
id

th
 [m

m
]

current N [1012]

Graves
linear

quadratic

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5

0 1 2 3 4 5 6
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

0 1 2 3 4 5 6

Graves sim
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

0 1 2 3 4 5 6

Graves sim
Graves

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

6.5

0 1 2 3 4 5 6

Graves sim
Graves

linear
1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

0 1 2 3 4 5 6

Graves sim
Graves

linear
quadratic1.5

2
2.5

3
3.5

4
4.5

5
5.5

6
6.5

0 1 2 3 4 5 6

sm
ea

re
d 

w
id

th
 [m

m
]

current N [1012]

Graves sim
Graves

linear
quadratic

2.5

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5 6
2.5

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5 6

Graves

2.5

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5 6

Graves
linear

2.5

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5 6

Graves
linear

quadratic

2.5

3

3.5

4

4.5

5

5.5

0 1 2 3 4 5 6

sm
ea

re
d 

w
id

th
 [m

m
]

current N [1012]

Graves
linear

quadratic

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

0 1 2 3 4 5 6
3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

0 1 2 3 4 5 6

Graves sim

3.5

4

4.5

5

5.5

6

0 1 2 3 4 5 6

Graves sim
Graves

3.5

4

4.5

5

5.5

6

0 1 2 3 4 5 6

Graves sim
Graves

linear

3.5

4

4.5

5

5.5

6

0 1 2 3 4 5 6

Graves sim
Graves

linear
quadratic

3.5

4

4.5

5

5.5

6

0 1 2 3 4 5 6

sm
ea

re
d 

w
id

th
 [m

m
]

current N [1012]

Graves sim
Graves

linear
quadratic

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

0 1 2 3 4 5 6
4.5

5

5.5

6

6.5

7

0 1 2 3 4 5 6

Graves

4.5

5

5.5

6

6.5

7

0 1 2 3 4 5 6

Graves
linear

4.5

5

5.5

6

6.5

7

0 1 2 3 4 5 6

Graves
linear

quadratic

4.5

5

5.5

6

6.5

7

0 1 2 3 4 5 6

sm
ea

re
d 

w
id

th
 [m

m
]

current N [1012]

Graves
linear

quadratic

5.8

6

6.2

6.4

6.6

6.8

7

7.2

0 1 2 3 4 5 6
5.8

6

6.2

6.4

6.6

6.8

7

7.2

0 1 2 3 4 5 6

Graves sim

5.5

6

6.5

7

7.5

8

0 1 2 3 4 5 6

Graves sim
Graves

5.5

6

6.5

7

7.5

8

0 1 2 3 4 5 6

Graves sim
Graves

linear

5.5

6

6.5

7

7.5

8

0 1 2 3 4 5 6

Graves sim
Graves

linear
quadratic

5.5

6

6.5

7

7.5

8

0 1 2 3 4 5 6

sm
ea

re
d 

w
id

th
 [m

m
]

current N [1012]

Graves sim
Graves

linear
quadratic

6.8

7

7.2

7.4

7.6

7.8

8

0 1 2 3 4 5 6
6

6.5

7

7.5

8

8.5

9

0 1 2 3 4 5 6

Graves

6

6.5

7

7.5

8

8.5

9

0 1 2 3 4 5 6

Graves
linear

6

6.5

7

7.5

8

8.5

9

0 1 2 3 4 5 6

Graves
linear

quadratic

6

6.5

7

7.5

8

8.5

9

0 1 2 3 4 5 6

sm
ea

re
d 

w
id

th
 [m

m
]

current N [1012]

Graves
linear

quadratic

7.6

7.8

8

8.2

8.4

8.6

8.8

9

0 1 2 3 4 5 6
7

7.5

8

8.5

9

9.5

0 1 2 3 4 5 6

Graves

7

7.5

8

8.5

9

9.5

0 1 2 3 4 5 6

Graves
linear

7

7.5

8

8.5

9

9.5

0 1 2 3 4 5 6

Graves
linear

quadratic

7

7.5

8

8.5

9

9.5

0 1 2 3 4 5 6

sm
ea

re
d 

w
id

th
 [m

m
]

current N [1012]

Graves
linear

quadratic

Figure 2: Simulations and parameterizations. The crosses are the results of our Octave simulation, including error
bars. The circles are the results of the simulation in Graves’s thesis, for which no error bars are available. The smeared
width is the width that would be observed in the IPM under the assumptions of our model, and it is plotted versus
the beam current, in units of DGF #�K protons per turn. Each one of the plots corresponds to a different initial value of
� *HG,)HI , the value which corresponds to F current. The functional form used to parameterize the response of the IPM is
described in the text.
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Parameter Fitted Value Uncertainty Units�
# B & 6�6 C DGF @�� F & � D C DGF @�� J #�@�� � � D)F #�K

� # 
IF & � D ( F & F D�� none�
K D & B�CED)F @�#	� D & ��C DGF @�#	� J #�@���
 � D)F K��

� K 
� & 6 ( F & D � none

Table 1: Results from fits to our simulation for linear and quadratic parameterizations.

In reference [3], the following formula is used to parameterize the results of his simulations

� *KG,)4I ����
# �

��
K � 2�G,) N < *HG,O �

���� " &
This formula is currently implemented in the Booster IPM data collection system [2] to estimate the true beam

width from the measured distribution. The simplest physical observation we can make about the scaling of measured
versus real beam widths is that

� *HG,)HI�� � 2�G,) N < *HG,O�������� F &
Unfortunately, the simple parameterization above does not have this property. Inspired by the theoretical result of

the previous section, we try the parameterization

� 2�G,) N < *KG,O � � *HG,)HI � �
# " ��� �*HG,)HI 7

which we refer to as the linear (in " ) parameterization. Postulating the form of the next term in the expansion, we
also consider the quadratic form

� 2�G,) N < *HG,O � � *HG,)HI � �
# " ��� �*HG,)HI � �

K " K ��� 
*KG,)4I &
Validating the linear and quadratic parameterizations is complicated by the fact that there are two independent

variables, � *HG,)HI and " . We tested these parameterizations by performing two stages of fitting to the results of the
simulation. First, we fit a parabola to the quantity � 2�G,) N < *HG,O 
 � *HG,)HI , where � 2�G,) N < *HG,O is the smeared � predicted by
the simulation, for each fixed � *HG,)HI using " as the independent variable. Next, we plot the coefficients of the parabolic
fit as a function of � *KG,)4I & If the linear and quadratic parameterizations describe the simulation well, the coefficients
of the first parabolic fits should be described by power laws. The plots of the coefficients, along with power-law fits,
are shown in Figure 3. The fitted parameters are shown in Table 1. Returning to Figure 2, we see that the power-law
fit with the linear term alone is sufficient for most of the parameter space we explored. It is only in region where
� *HG,)HI becomes small and " becomes large that the quadratic term in the power-law fit becomes important. Even
with the quadratic term, beam sizes around 1 mm are not well described by our parameterizations, linear or quadratic.
Fortunately, beams as small as 1 mm are never observed in the Booster under normal operating conditions.

The extracted value � #
� 
IF & � D (�� F & F D�� is similar to, but not exactly the same as, the value 
 #K obtained in

the calculation of Section 2. In the calculation, however, we estimated the overall linear spread in the measured 9 ,: 9 ;�<0= > . In the simulation, however, we extracted widths by fitting to a gaussian with a linear background, as described
above. We expect the behavior of

: 9 ;�<0= > to be similar to, but not exactly the same as the width obtained from the fitting
procedure. The small difference in the powers is therefore not unexpected.

4 Measurements

In order to perform an experimental measure of the IPM calibration, we took width measurements simultaneously
with the Booster IPM, the MI-8 extraction line wire chamber and the so-called “Flying Beam” wire[5]. The “Flying
Beam” wire is a single wire measuring device at the Booster Long 1 section, which can be parked just outside the
beam envelope of the injected beam, i.e beam envelope with the ORBUMP magnets on. At injection, the ORBUMP
magnets keep the beam trajectory displaced by ~4 cm with respect to the nominal beam orbit, so that the injected H-

ions will pass through a stripping foil. The wire is placed between the displaced and nominal orbits. As the ORBUMP
5
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Figure 3: Power-law fits to parabolic coefficients as described in the text. The smallest value of � *KG,)4I was left out of
the quadratic term fit to avoid contamination from higher-order terms in the series.
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Figure 4: Typical horizontal beam profile measured with the“Flying Beam” wire.

current decays, the beam sweeps through the wire, providing a measure of the horizontal beam profile. By recording
the ORBUMP current as a function of time, � ��� � , and the response of the wire as a function of time, � ��� � , we can
reconstruct the horizontal profile, � � � � , as measured by the wire by using the known beam position as a function of
current, ����� � . See Figure 4 for a display of a typical beam profile as measured by the “Flying Beam” wire.

The turn number for which we extract the profile is controlled the timing of the injected beam with respect to the
ORBUMP current pulse. Therefore the range of turns for which we can extract beam profiles with this technique is
limited by the length of the ORBUMP pulse, which amounts to roughly 30 turns. There is a drawback in this method:
we can only measure one profile during a given Booster cycle. If we want to measure widths of different turn numbers,
we are only able to do so during different Booster cycles. Also, since the ORBUMP affects only the horizontal plane,
we can only calibrate the horizontal IPM detector. The vertical detector can only be calibrated after a temporary
rotation to the horizontal plane.

After injection into the booster, the transverse size of the beam decreases during acceleration. Since the “Flying
Beam” wire measures beam widths during the first few turns and the MI-8 chamber measures the beam width after
extraction, we were able to see the extremes of the range of beam sizes available. We varied the beam intensity between
1 and 13 injected turns in order to explore a wide variety of intensities. For the analysis presented here we used data
sets collected on November 11, 2002 and December 10, 2002.

In order to compare the data from the three different positions in the accelerator complex, each with (poten-
tially) different � -functions we scaled the widths obtained from the wire and chamber to the IPM by multiply-
ing by � ���	��
 � ��E@ *HG�� F & � � ( ���	��
 � ('&�� ��� and ���E@ *HG � �'& � ��� at injection, from Reference [6]) and
� ��	��
 � ����� ) 2�� G?*�� F & B � , respectively ( ����� )42�� G?* � D � & ��� � , at extraction, from Reference [7]). The raw data
are summarized in Tables 2 and 3. Also, since the time resolution of the “Flying Beam wire” is a few turns, we aver-
age the IPM measured beam profiles from five consecutive turns to compare with the wire. An example of horizontal
beam profiles as measured by the IPM for three different beam intensities are shown in Figure 5.

In comparing our experimental results with the simulations, we found that all of the data fell in the regime in

7



-10

0

10

20

30

40

50

60

70

0 5 10 15 20 25 30

co
un

ts
 (

pe
de

st
al

 s
ub

tr
ac

te
d)

strip number

eleven turns injected
five turns injected

single turn injected

Figure 5: IPM measured horizontal beam profiles for a beam charge of one (red), five (cyan), and eleven (blue) injected
turns in the machine. The corresponding lines are a fit to the data using a gaussian plus a first degree polynomial
function.

time wire width wire error IPM width IPM error Current [ D)F #�K ] No. IPM points

1384 3.7570 0.0072 6.406 0.118 5.030 15
1395 3.8778 0.0042 6.532 0.096 6.450 10
1371 3.2375 0.1064 4.288 0.106 0.981 43
1371 3.8882 0.0017 4.393 0.024 1.258 17
1418 3.8305 0.0035 5.053 0.099 2.085 17
1418 3.7846 0.0053 5.273 0.060 3.158 11
1400 3.8057 0.0015 4.868 0.046 3.295 11
1400 3.9399 0.0045 5.158 0.055 4.425 12
1380 4.0525 0.0012 5.445 0.103 3.439 7
1380 3.1100 0.0928 4.552 0.291 0.550 20

Table 2: Wire (“Flying Beam”) data.
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chamber width chamber error IPM width IPM error Current [ DGF'#�K ] No. IPM points

3.300 0.050 4.906 0.100 4.200 35
2.045 0.081 2.604 0.047 0.800 43
2.168 0.041 2.995 0.065 1.562 17
2.250 0.041 3.327 0.039 2.341 11
2.370 0.041 3.744 0.035 3.135 12
2.618 0.041 4.276 0.037 4.053 7

Table 3: MI-8 chamber data.
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Figure 6: Comparison of our linear parameterization with the data and simulation. The linear parameterization predicts
a linear relationship between the quantities plotted. The simulation has been normalized to match the data.

which the linear and quadratic power-law fits were indistinguishable. As a simple test of the power-law scaling seen
in the simulation, we plot the quantity � � 2�G,) N < *KG,O 
 � *HG,)HI ��� " as a function of � *KG,)4I for all of the data and simulation
points. We take � *HG,)HI to be the width obtained from the wire or chamber and � 2�G,) N < *HG,O to be the raw (uncorrected)
width obtained from the IPM. The simulation points for a given value of � *KG�)HI will fall on top of each other only to
the degree that the linear power-law fit is sufficient to describe the simulation. Because we argued that the constant�
# depends on the details of the beam and IPM, we let it float in order to find the best fit to the data. We did not vary

the parameter � # . The value of
�
# we get from the fit to the data, �D & D�� � F & F ��� C�DGF @���J #�@�� � � D)F #�K , is approximately

one third larger than the value we obtained from the simulation (see table 1), which is reasonable given the simple
assumptions present in the model. Figure 6 shows the scaling behavior of the simulation is quite consistent with the
data. Since we have not identified all the sources of systematic errors in the wire measurements we estimate their size
from the scatter of the points of Table 2 and Table 3. This results to a total error which is approximately three times
the size of the statistical error; the total error is shown in Figure 6.
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5 Summary and conclusions

We have obtained a calibration for the FNAL Booster horizontal IPM detector, using a new device, the “Flying Beam”
wire, at injection, and a MWPC at extraction. The data from these devices were compared to IPM measurements for
different injected currents in the machine, and the IPM response was fit to a function determined by a two-dimensional
electrodynamics model of the detector. We have found that the relation between the raw beam width seen in the IPM
and the true width is well described by the function

� 2�G,) N < *KG,O � � *HG,)HI � �
# " ��� �*HG,)HI 7

where " is the current in units of DGF #K protons in the machine,
�
#
� ��D & D�� � F & F ��� C DGF @���J #�@�� � � D)F #�K , and

� #
� F & � D ( � F & F D�� . The range of validity in � � *HG,)HI 7 " � , can be extended by adding a term quadratic in " , but we do

not find it necessary in order to reproduce our data.
The importance of the calibration for the Booster IPM detector and the size of the beam self-field induced effects

is demonstrated in figure 7, where both the calibrated and uncalibrated IPM beam profiles are shown, together with the
beam current, as a function of time. The effect is most dramatic during the first eleven turns in the machine (injection
time), since the beam current is changing. The change of the uncalibrated beam width clearly tracks the beam current
change. The calibrated width shows a much smaller variation during the injection period.
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